The book was found

Growing Object-Oriented Software,
Guided By Tests

GROWING
OBJECT-ORIENTED
SOFTWARE,

STEVE FREEMAN "‘ :
MNAT PrYCE

S —
——

' /g& DOWNLOAD EBOOK
filobe

http://ebooksperfect.com/en-us/read-book/NZj2z/growing-object-oriented-software-guided-by-tests.pdf?r=UcRNGDz9mw%2BS3dBMrdM0BjGTeIUWeQ5H3fXKEX%2B28UMLIh1a3c1a8kq4j1r1o3LY
http://ebooksperfect.com/en-us/read-book/NZj2z/growing-object-oriented-software-guided-by-tests.pdf?r=CEblAhEEAdSnIW5zAXAVj9G0SD0PhLO4iOuU0ocJGZnL7H%2BYGEI9rPJvkKii2mWi

Synopsis

Foreword by Kent Beck A "The authors of this book have led a revolution in the craft of
programming by controlling the environment in which software grows.4 « --Ward Cunningham A

a ceAt last, a book suffused with code that exposes the deep symbiosis between TDD and OOD.
This one's a keeper.a --Robert C. Martin A a celf you want to be an expert in the state of the
art in TDD, you need to understand the ideas in this book.4 *-Michael Feathers A Test-Driven
Development (TDD) is now an established technique for delivering better software faster. TDD is
based on a simple idea: Write tests for your code before you write the code itself. However, this
"simple" idea takes skill and judgment to do well. Now there's a practical guide to TDD that
takes you beyond the basic concepts. Drawing on a decade of experience building real-world
systems, two TDD pioneers show how to let tests guide your development and & cegrowa e software
that is coherent, reliable, and maintainable. A Steve Freeman and Nat Pryce describe the
processes they use, the design principles they strive to achieve, and some of the tools that help
them get the job done. Through an extended worked example, youa ™Il learn how TDD works at
multiple levels, using tests to drive the features and the object-oriented structure of the code, and
using Mock Objects to discover and then describe relationships between objects. Along the way, the
book systematically addresses challenges that development teams encounter with TDD--from
integrating TDD into your processes to testing your most difficult features. Coverage includes A

a ¢A A Implementing TDD effectively: getting started, and maintaining your momentum A A A
throughout the project 4 ¢A A Creating cleaner, more expressive, more sustainable code & ¢A

A Using tests to stay relentlessly focused on sustaining quality 4 ¢A A Understanding how TDD,
Mock Objects, and Object-Oriented Design come together A A A in the context of a real software
development project 4 ¢A A Using Mock Objects to guide object-oriented designs a ¢A

A Succeeding where TDD is difficult: managing complex test data, and testing persistence A A

A and concurrency A

Book Information

Paperback: 384 pages

Publisher: Addison-Wesley Professional; 1 edition (October 22, 2009)
Language: English

ISBN-10: 0321503627

ISBN-13: 978-0321503626

Product Dimensions: 7 x 0.9 x 9.1 inches

Shipping Weight: 1.4 pounds (View shipping rates and policies)

Average Customer Review: 4.5 out of 5 starsA A See all reviewsA (44 customer reviews)

Best Sellers Rank: #65,455 in Books (See Top 100 in Books) #29 inA Books > Textbooks >
Computer Science > Object-Oriented Software Design #30 inA Books > Computers & Technology
> Programming > Software Design, Testing & Engineering > Testing #80 inA Books > Textbooks >

Computer Science > Software Design & Engineering

Customer Reviews

There are many books about Test-Driven Development on the market, but this book is unique. It
presents a style of TDD which originated in the London software development community. It's a
style which pushes several key ideas to the extreme: "tell, don’t ask" object design, fully end-to-end
incremental development, and the deep synergy between testability and good design. Steve and
Nat have done a stellar job refining and presenting these ideas. The text is lucid and precise. When
you read this book you’ll be exposed to far more than just another style of TDD, you'll be exposed to

a depth of insight about emergent object oriented design which is both rare and extremely valuable.

This book has been in my pre-ordered list for quite a while and | was looking forward to this. | found
the title alone already excellent. Steven and Nat (authors of jMock) are well known expert TDD
practitioners, so | was looking forward to what they had to say. The book was better than | had
expected.The book consists of 5 parts. The first part of a very quick introduction to TDD and jMock.
The second part discusses the tdd cycle in more detail. The third part (150 pages) is a very large
example of growing a piece of software. The fourth part discusses topics on how to sustain TDD
and the last part covers some advanced topics.In this review, I'll skip part 1 as it was short and
nothing special. Part two covers the TDD cycle and the link to evolutionary design. Steve and Nat
have a design style that focuses almost purely on the interactions between classes which are most
frequently tested using expectations on mock objects (which, as authors of jMock, they have lots of
experience with). Most notable from part 2, for me, were the classifications of objects that they used,
the strong focus on interaction and mocking (more than | usually have when test-driving) and their
lack of focus on classes but focus on roles and responsibilities. Nat and Steve clarify their thinking
exceptionally well which makes it all easy to understand.Part 3 takes the largest part of the book,
which is where they test-drive an AuctionSniper application. It is a small application, but large for a
book example. The authors show how they gradually build up the application by adding one test at

the time and how they gained insights during this process which made them adjust their design. |

had mixed feelings about this part as a book didn’t seem like the best medium for doing this, but still
| appreciate the insights they had and also their attempt to make it as close to "real world" as
possible.Writing tests is one thing, maintaining them in another. Part 4 discusses how to make the
tests maintainable and the tdd cycle sustainable. Personally, | found this part very insightful and the
authors discipline exemplar. The authors start of with different test smells and what to do about it.
They then discuss readability of the tests and of the error messages and spend some time of test
object creation. Most notable from that part (for me) was their focus on using builders for creating
test data, rather than object mothers.The final part covers three (or actually two!) advanced topics.
First is testing persistence where most interesting was how the authors seemed to prefer to "go all
the way" whereas the common advise (for test speed) is to rollback and mock more. (this was
actually a common theme in their book). The last two chapters deal with multi-threading and async
code. | was unclear why these were separated in two chapters and they they were in this particular
order. The content was excellent though, except that | missed some typical design guidelines
related to multi-threading design. It almost felt they were in a hurry to write the last two
chapters...Anyways, in conclusion, this will definitively be one of my favorite (if not the favorite) TDD
books and general design books. Steven and Nat did a wonderful job on this one. Though the book
is not perfect, | enjoyed it thoroughly. A definite recommendation for anyone interested in modern
design and TDD.

This is a GREAT book... one of those you don’t wanna stop reading. But the kindle version sux so
bad that | gave up when | saw the first code samples...A programming book with code samples that
are almost impossible to read is a huge drawback. 70% of the value is lost in the kindle version.. |

am sure that sooner or later this will be fixed but until then... stick to the printed version.

In a way this book presents the essence of a decade of test-driven development practice. The
authors bring together the various tools of uptodate TDD like mock objects, bdd-style naming and
acceptance tests. Open the book on any chapter and you will most likely find useful and deep
advice, even if you consider yourself already a TDD expert.There’s one catch, though, that made
me lower the rating to 4 stars: The authors go for an extended example which covers the full TDD
cycle; from a walking skeleton, to the first acceptance test, into many obvious and some
non-obvious refactorings. As noble as this endeavour is, it didn’t work for me as a reader. Coming
back to the text - and the code - after a day or two | often got lost trying to grasp the subtle nuances;

| just couldn’t remember all the necessary details of previous chapters.Nonetheless, it's an excellent

book and | enjoyed it. Get a copy, read it and become a better TDD practitioner.

The person who handed me this book said it was "better than Lasse’s book" (Test Driven.) |
disagree. One can’t compare the two books - Test Driven is meant for beginners and this book is
meant for an advanced audience. If you have never written unit tests before, this book is very hard
to follow. So put it down, get an intro book and come back.| really liked the emphasis on making the
software responsive to change along with separating acceptance and unit tests. The book uses
Junit 4.6 and therefore covers Hamcrest matchers for both JUnit and JMock. | like the authors cover
best practices, good design and clearly indicate what is a personal preference. | really liked part 4’s
emphasis on things that are hard to test at a higher level than "extract method."The only thing that
prevents me from giving full marks, is the case study. While | did read this part in one sitting, it was
still hard to follow. There was a lot of information to keep in mind while trying to focus on the lessons
of the example. | also think it was admirable for the authors to use a Swing example since Swing is
harder to test. However, Swing is also less common for Java developers to use actively adding
another block to understanding the software growing/testing aspects. And it is even harder for
non-Java developers who are in the target audience for the book.Except for the case study, |
thought the book was amazing. And I'm sure the case study is a matter of taste.---Disclosure: |
received a copy of this book from the publisher in exchange for writing this review on behalf of

CodeRanch.

Download to continue reading...

Growing Object-Oriented Software, Guided by Tests Object Success : A Manager’s Guide to
Object-Oriented Technology And Its Impact On the Corporation (Object-Oriented Series) Reusable
Software : The Base Object-Oriented Component Libraries (Prentice Hall Object-Oriented Series)
Object-oriented software development: Engineering software for reuse Object-Oriented Software
Engineering: Practical Software Development Using UML and Java Visual Object-Oriented
Programming Using Delphi With CD-ROM (SIGS: Advances in Object Technology) Design Patterns
CD: Elements of Reusable Object-Oriented Software (Professional Computing) Object-Oriented and
Classical Software Engineering Object-Oriented Software Engineering Using UML, Patterns, and
Java (3rd Edition) [Economy Edition] Object-Oriented Software Engineering: Using UML, Patterns
and Java (2nd Edition) Design Patterns: Elements of Reusable Object-Oriented Software Design
Patterns: Elements of Reusable Object-Oriented Software (Adobe Reader) Growing Marijuana: Box
Set: Growing Marijuana for Beginners & Advanced Marijuana Growing Techniques McGraw-Hill’'s

500 Physical Chemistry Questions: Ace Your College Exams: 3 Reading Tests + 3 Writing Tests + 3

http://ebooksperfect.com/en-us/read-book/NZj2z/growing-object-oriented-software-guided-by-tests.pdf?r=1Zv8Rkk3%2BDH6%2BZTqZ7YaGxMvuKXQAiqcELFZsAjFi%2Fk%2FUsyAeq%2FAGxPW%2BCJ2aobm

Mathematics Tests (McGraw-Hill’'s 500 Questions) Object-Oriented Frameworks Using C++ and
CORBA Gold Book: The Must-have Guide to CORBA for Developers and Programmers Distributed
Object-Oriented Architectures: Sockets, Java RMI and CORBA Building Distributed,
Object-Oriented Business Systems Using CORBA SNMP++: An Object-Oriented Approach to
Developing Network Management Applications (Bk/CD-ROM) Object Oriented Programming with
Swift 2 Smalltalk V 32-Bit Object-Oriented Programming System - Tutorial (1994 Win32 Series
Version 3.0) Digitalk

Dmeca

http://ebooksperfect.com/en-us/dmca

